

Lunar Relativistic Positioning System for human exploration

Luca Levrino levrino@mit.edu

Luigi Colangelo, Giacomo Gatto, Jeffrey A. Hoffman, Nicola Linty, Angelo Tartaglia

Massachusetts Institute of Technology and Politecnico di Torino

November 19 2014

2nd UNISEC-Global Meeting Kyushu Institute of Technology, Kitakyushu, Japan Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

INTRODUCTION Mission Need

Future of human space exploration:

INTRODUCTION

Mission Need

Future of human space exploration:

- Moon, Mars, ...
- Permanent outposts (e.g. lunar South Pole)
- Planetary exploration: why?
 - ✓ Scientific activities (samples, water ice, minerals, ...)
 - ✓ In-situ resource utilization (outpost sustainment)
- Planetary exploration: how?
 - ✓ Around the base
 - \checkmark Far from the base
- Rovers
 - ✓ Manned and unmanned
 - $\checkmark\,$ Pressurized and not pressurized
- Positioning/Navigation becomes a major problem
 - ✓ Need for a navigation system, like GPS, GLONASS, Galileo, Beidou on Earth
 - ✓ Simple to setup (e.g. no synchronization)
 - ✓ Cost effective (e.g. cost of Moon launches, atomic clocks, ...) Requirements

INTRODUCTION

Mission Objectives

• Mission target: Moon

Navigation strategy: Relativistic Positioning System

- Only pulse signals (no information transmitted)
- No need to synchronize clocks
- ✓ No relativistic corrections
- Nanosatellites
 - ✓ Low mass

Piggyback launches

- Low volume
- ✓ Low power requirements

Primary Objective

To support human exploration of the Moon by means of an innovative Relativistic Positioning System (RPS) whose accuracy is better than **50 meters**

Simpler than GPS

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

CONCEPT OF OPERATIONS

Relativistic Positioning time

- Exploit relativity instead of correcting it!
- 4D grid covering space-time ← drawn thanks to reception of signals

r Micro/Nano-satellite Utilization

$$r = \frac{t^{a}}{T_{a}} C_{a} + \frac{t^{b}}{T_{b}} C_{b} + \frac{t^{c}}{T_{c}} C_{c} + \frac{t^{d}}{T_{d}} C_{c}$$

Null geodesics χ

✓ 4D curves along which light and EM signals propagate

event

χ_b

- ✓ Express space-time position of each emitting source
- Vectors χ_a , χ_b , χ_c , χ_d : base of 4D space
- To localize an event **r** in space time
 - ✓ At least 4 sources emitting pulses
 - ✓ Count pulses
 - Know where sources are and their pulse period

space

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

Signals Orbits Subsystems

Signals

- Nanosatellites emit periodic *radar-like* electromagnetic Radio Frequency signals
- Gaussian pulse, modulated by a sinusoidal carrier in the S band (2.2 GHz)
- Pulse width: 10 μs
- Each satellite has a different pulse period
- Pulse periods spaced by 10 μs
 - ✓ e.g. *T*₁=100 µs, *T*₂=110 µs, *T*₃=120 µs

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

Signals Orbits Subsystems

Orbits and Constellation

- 1. Area of interest: South Pole and surroundings
- 2. Stable orbits

Requirements

3. At least 4 satellites in view

Geometric Dilution Of Precision

The 3rd

Micro/Nano-satellite Utilization

- Accuracy of positioning depends also on a geometry factor
- GDOP is a measure of the composite effect of the relative satellite/user geometry
- Strictly depends on azimuth and elevation of satellites in view
 - Expected average GDOP on
 different points of the lunar
 surface in a region centered at
 the South Pole along 18 hours
 with the 6 satellites
 constellation

SPACE SEGMENT Orbits and Constellation

- Increase accuracy
 - ✓ Geometry
 - ✓ # satellites increase
- Add 6 satellites
 - ✓ a = 5000 km
 - ✓ e = 0.41
 - ✓ i = 45° and 135°
 - ✓ $T \approx 9$ hours
 - ✓ M accordingly spaced
- GDOP with **12** satellites

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

Signals Orbits Subsystems

Nanosatellites

- 2U
 - ✓ External size≈10x10x20 cm
 - ✓ Internal volume≈1900 cm³
- Design maximizes use of COTS

Subsystem	Mass (kg)	Volume (cm ³)	Power (W)
AODCS	1.25	656	1.5
EPS	1.27	397	0.8
OBC	0.10	107	0.4
Clock	0.05	17	0.2
Structure	0.39	-	-
Comm	0.20	74	1.0
Total	3.90	1501	4.6

AODCS

- Sensors
 - ✓ Sun sensors
 - ✓ MEMS gyros (3-axes)
 - ✓ IMU close to center of mass
 - 3-axes accelerometer
 - 3-axes gyro
- Actuators
 - ✓ 1 Pulse Plasma Thruster (PPT)
 - I_{sp}=500-600 s
 - Orbit insertion
 - Boost orbit lifetime (10 years)
 - m_p=0.3 kg
 - ✓ 2 electrospray thrusters
 - Microfabricated Electrospray Arrays

The 3rd

lission Idea Contest

or Micro/Nano-satellite Utilization

Solar

Arrays

- I_{sp}=2500-5000 s
- Fine pointing mode
- Mission mode
- m_p=0.1 kg

SPACE SEGMENT EPS

- Requirements
 - ✓ Average power \approx 5 W
 - ✓ Eclipse: max 1 hour
 - ✓ Daytime: worst case 8 hours
 - ✓ Long eclipses not considered
 - 4-6 hours
 - Only twice a year
 - Standby mode
- Solar panels
 - ✓ 8 GaAs arrays
 - 2.3 W power each
 - 60 g each
- Storage
 - ✓ 2 Li-Ion batteries
 - 40 Wh each
 - 240 g each

SPACE SEGMENT Clock

- Scale atomic clock
 - ✓ Quantum[™] SA.45s CSAC
 - ✓ 120 mW
 - ✓ 35 g
- Stability
 - ✓ Allan deviation 8x10⁻¹² at observation time t=1000-10000 s
 - ✓ Positioning error
 - ±9 m
 - Clock update every 3 h
 - ✓ Temperature stability
 - box with a high reflectivity index

SAC

Chip Scale Atomic Clock

SPACE SEGMENT Communication

- S-Band: 2.2 GHz
 - Antenna
 - ✓ 6 dBi gain
 - ✓ 60° beamwidth
 - Power amplifier (transmitter)
 - ✓ 1W
- Link
 - ✓ False alarm probability of 10^{-5}
 - ✓ Detection probability of 0.9

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

GROUND SEGMENT Ground Station

- Lunar base at South Pole
- High-performance antennas to track the satellites in space-time
 - ✓ Ephemerides
 - ✓ Signal periods
- Updates to be transmitted to users
 - ✓ Every 3 hours
 - Data relay satellites orbiting around the Moon
- Operations
 - Astronauts at lunar base (especially EVA support)
 - ✓ Team of 3-4 people on Earth

GROUND SEGMENT

GROUND SEGMENT Positioning Accuracy

- Root-sum-square of different contributions
 - ✓ Satellite clock phase error (±9 m)
 - ✓ Ephemeris error (radial ±1 m, along track ±4 m, cross track ±2 m)
 - ✓ Receiver noise and resolution (±3 m)
 - ✓ Multipath reflections (±1 m)
- Multiplied by GDOP
 - ✓ Error < 100 m in 6 satellite constellation</p>
 - ✓ Error < 50 m in 12 satellite constellation</p>

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

IMPLEMENTATION Project Schedule

Year	2014				2025					202	5			202	7			2028	8		2	2029	Э	}	2031				2039				2041		
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3 4	1 1	2	3	4	1	2	3	4	1	2	3	4
MIC 2014																								1											

IMPLEMENTATION

Cost Analysis

- Cost of one nanosatellite \approx 150 k\$
- Design, assembly, development, integration and testing
 - ✓ Team of 15-20 people
 - ✓ 4-5 years
 - ✓ Average salary of 70-100 k\$ per year per person
 - ✓ Prototype cost \approx 0.5-1 M\$
- Launch costs for 12 cubesats ≈ 0.6 M\$
- Operations
 - ✓ Team of 3-4 people
 - ✓ 10 years
- Disposal: de-orbit propellant already considered

or Micro/Nano-satellite Utilization

• Total ≈ **15 M\$**

Introduction Concept of Operations Space Segment Ground Segment Implementation Conclusions

CONCLUSIONS

Potential Risks and Solutions

- Competition with existing technologies
 - ✓ Earth GPS on the Moon
 - Good results
 - Limited availability
 - ✓ LRPS
 - Reduced complexity and low cost
 - Very good coverage and GDOP
 - Also on other planets
- False alarm and detection probabilities
 - ✓ High gain receiver antennas
 - ✓ Advanced signal processing techniques
- Orbit stability
 - ✓ Mascons not well determined
 - ✓ Orbit control system included
- Maintenance
 - ✓ Redundancies in constellation size

CONCLUSIONS

Project Sustainability

- Components Off The Shelf
 - Low development and construction costs
 - ✓ Standardized size
- Launch
 - ✓ Piggyback
 - ✓ Decrease in launch costs
- Not particular ground infrastructure to build
- Mission architecture easily extendable to cover the whole Moon
- Support spacecraft landing on the Moon
- A similar idea could be used to improve GPS coverage at Earth poles

Thank you! ありがとうござい ました

Back up slides

Relativistic Positioning

CONCEPT OF OPERATIONS

Relativistic Positioning

- Exploit relativity instead to correct it!
- Four dimensional grid covering space-time \leftarrow drawn thanks to reception of signals
- No need to synchronize clocks
- No need to define origin of time Simpler than GPS

The 3rd

lission Idea Contest

or Micro/Nano-satellite Utilization

No relativistic corrections

$$\chi = cT(1, \cos\alpha, \cos\beta, \cos\gamma) = cT(1, \vec{n})$$

Period of the signal

Direction cosines

• Vectors χ_a , χ_b , χ_c , χ_d : base of 4D space

CONCEPT OF OPERATIONS Relativistic Positioning

CONCEPT OF OPERATIONS Relativistic Positioning

SPACE SEGMENT AODCS

- Attitude and orbit perturbations ٠
 - ✓ Third body effect due to Earth and Sun gravity
 - Forces due to solar radiation and wind \checkmark
 - ✓ Commanded thrust forces

or Micro/Nano-satellite Utilization

AODCS

- Attitude stabilization maneuvers
 - ✓ 10 m/s per maneuver
 - ✓ 3 times a year: 2 after long eclipses + margin

The 3rd

- Station-keeping in lunar frozen orbit
 - ✓ 40 m/s/year
- Fine attitude control in LRPS mission phase
 - ✓ 10 m/s/year
- Nanosatellite disposal
 - ✓ 10 m/s

Idea Contest

or Micro/Nano-satellite Utilization

AODCS: control modes

- Separation and de-tumbling mode.
 - ✓ attitude uncertainty: about 5°
 - \checkmark spinning velocity about the x-axis
 - \checkmark accurate antenna orientation is not required
 - ✓ colloidal microthrusters reduce the tumbling motion under a certain threshold.

• Attitude and orbit acquisition mode.

- ✓ attitude and orbit starting points uncertainty: 5°, at most.
- Orbit insertion mode.
 - ✓ error affecting position and velocity vectors below a defined threshold.
- Fine attitude acquisition and pointing mode.
 - ✓ Nadir-pointing control strategy
 - ✓ attitude uncertainty: 1-2°
- LRPS Mission mode.
 - \checkmark on-board systems checked and working.
 - ✓ orbit control system (firing the PPT)
- Safe mode.
 - ✓ eclipse periods/in case of failure
 - \checkmark minimum amount of power

AODCS: proposed hardware – SENSORS 1/2

- \checkmark Sun sensors
 - Photo-diodes integrated in the solar panels
 - Current: 170 uA
 - Field of view: 114°
 - Update Rate: >10 Hz (limited by ADC)
 - Accuracy: <0.5°</p>
- ✓ MEMS gyros integrated in the solar panels (3-axes)
 - Range: 80 °/s
 - Sensitivity: 0.00458 °/s
 - Bias stability: 0.016 °/s
 - Vcc: 5 V
 - Current: 44 mA

AODCS: proposed hardware – SENSORS 2/2

- ✓ IMU (6 Degrees of Freedom on a single, flat board):
 - ITG-3200 triple-axis digital-output gyroscope
 - Digital-output X-, Y-, and Z-Axis angular rate sensors (gyros) on one integrated circuit
 - Digitally-programmable low-pass filter
 - Low 6.5mA operating current consumption for long battery life
 - Wide VDD supply voltage range of 2.1V to 3.6V
 - Standby current: 5µA
 - Digital-output temperature sensor
 - Fast Mode I2C (400kHz) serial interface
 - Optional external clock inputs of 32.768kHz or 19.2MHz to synchronize with system clock
 - ADXL345 13-bit resolution, ±16g, triple-axis accelerometer
 - 1.8V to 3.6V supply
 - Low Power: 25 to 130uA @ 2.5V
 - SPI and I2C interfaces
 - Up to 13bit resolution at +/-16g
 - Activity/Inactivity monitoring
 - Free-Fall detection
 - Outputs of all sensors processed by on-board ATmega328 processor and sent out via a serial stream
 - 3.5-16VDC input
 - Dimensions: 1.1" x 1.6" (28 x 41mm)

AODCS: attitude perturbations (torques) 1/2

Non-spherical gravitational field (gravity-gradient torques)

$$M_g(t) = \frac{3}{2}\omega_0^2 \begin{bmatrix} (J_3 - J_2)\sin 2\varphi\cos^2\vartheta \\ -(J_1 - J_3)\sin 2\varphi\cos\vartheta \\ -(J_2 - J_1)\sin 2\varphi\sin\vartheta \end{bmatrix}, \ \omega_0^2 = \frac{\mu_M}{a^3}$$

Where:

- M_g(t): perturbing torque affecting the s/c
- J_1, J_2, J_3 : inertia of the s/c about the principal axes (hyp. Body axes are principal)
- φ, ϑ : s/c attitude angles
- μ_M : Lunar gravitational constant
- a: orbit semi-major axis

✓ External particles (solar wind and Lunar residual atmosphere)

Obs: Disturbance aerodynamic torques generated iif CoM ≠ CoP

$$\vec{F}_D = \sum_{k=1}^n \vec{F}_{Dk} = -\frac{1}{2} \rho \left| \vec{v}_r \right|^2 \sum_{k=1}^n C_{Dk} \max\left(\cos \alpha_k, 0 \right) A_k \vec{e}_v$$

$$\cos \alpha_k = \vec{n}_k \cdot \vec{e}_v$$

$$\vec{M}_D = \sum_{k=1}^n \vec{a}_k \times \vec{F}_{Dk}$$

Where:

- M_D: perturbing torque affecting the s/c
- F_D : perturbing force affecting the s/c
- ρ: atmosphere density
- v_r : relative velocity
- n: number of surfaces of the s/c
- A_k : area of the k-th surface of the s/c
- $\overrightarrow{e_v}$: incident particle direction
- C_{Dk} : drag coefficients

AODCS: attitude perturbations (torques) 2/2

Electromagnetic waves (photons) from Sun (radiation solar pressure) and Moon emitted/reflected radiation

source

Obs: Disturbance torque generated iif CoM ≠ CoP

The resulting pressure depends on:

- the vehicle geometry,
- the radiation direction in the body frame,
- the optical properties of the surface.

The incident electromagnetic may be:

- completely absorbed by the surface,
- specularly reflected,
- diffusely reflected in any direction,
- transmitted.

 $\vec{M}_r = \sum_{k=1}^n \vec{a}_k \times \vec{F}_{rk}$

 $\vec{F}_{r} = \sum_{k=1}^{n} \vec{F}_{rk} = -p \sum_{k=1}^{n} \left((1 - C_{sk}) \vec{s} + 2 (C_{sk} \max(\cos \alpha_{k}, 0) + C_{dk} / 3) \vec{n}_{k} \right) \max(\cos \alpha_{k}, 0) A_{k}$ $\cos \alpha_{k} = \vec{s} \cdot \vec{n}_{k}$ Where:

- M_r: perturbing torque affecting the s/c
- F_r: perturbing force affecting the s/c
- n: number of surfaces of the s/c
- A_k: area of the k-th surface of the s/c
- *C_{sk}*, *C_{dk}*: specular and diffusion coefficients
- α: angle of incidence
- p: pressure of the electromagnetic radiation
- $\overrightarrow{n_k}$: outer normal direction of the k-th surface of the s/c

AODCS: orbit perturbations (forces)

✓ Third-body effects: Earth and Sun

$$F(t) \cong m \sum_{j=2}^{n-1} \left(-\frac{\mu_j r}{r_j^3} \left(\frac{r}{r} - 3 \frac{r_j}{r_j} \cos \alpha \right) \right)$$

Where:

- F(t): perturbing force affecting the s/c
- m: s/c mass
- n: number of space bodies taken into account
- μ_i : j-th body gravitational constant
- r_i: j-th body radius
- r: satellite radius
- α: angle of view

✓ Aerodynamic forces and wind (residual atmosphere)

$$F = -\frac{1}{2}\rho v_r^2 \sum_{k=0}^{n-1} (C_{n,k} \overrightarrow{n_k} + C_{v,k} \overrightarrow{e_v}) A_k$$

Where:

- F: perturbing force affecting the s/c
- p: thermosphere density
- v_r : relative velocity
- n: number of surfaces of the s/c
- A_k : area of the k-th surface of the s/c
- $\overrightarrow{n_k}$: outer normal direction of the k-th surface of the s/c
- $C_{n,k}, C_{v,k}$: mixed aerodynamic coefficients

EPS: solar panels

- ✓ 8 GaAs arrays
- ✓ Single panel properties:
 - Power: 2.3 W
 - Operational temperature: -40 °C to +85 °C
 - Dimensions: 82.5mm x 98.0mm x 2.1mm
 - Height of connectors: 4.8 mm
 - Height of gyro: 5.5 mm
 - Panel thickness: 2.15 mm
 - Mass: 60 g
- ✓ Single panel further features:
 - Two series-connected AzurSpace 3G-30 space qualified triple junction solar cells + protection diodes
 - Integrated magnetorquer of 1.6 m²
 - Coarse sun sensor
 - Temperature sensor
 - Gyro-scope model ADIS16251 (0.004 °/s)
 - Top/Bottom or side panel version

GROUND SEGMENT Receiver block scheme

GROUND SEGMENT

Signal acquisition strategies

Synchronization problem:

- 1. CDMA modulation (similar to GPS)
 - ✓ Orthogonal codes
 - ✓ Despreading gain
 - ✓ Robust to AWGN
 - ✓ Allows signal identification
 - ✓ More complex receiver
- 2. Edge detector
 - ✓ Time domain analysis
 - ✓ Detect pulse rising edge
 - ✓ Limited resolution
- 3. Pulses modulation and matched filter
 - ✓ Correlation with local replica of signal
 - ✓ Simple solution
 - ✓ Optimal filter to maximize SNR

GROUND SEGMENT False alarm and detection probabilities

False alarm probability: P_{fa} Detection probability: P_d

 $P_{fa}(\beta) = P(X > \beta | H_0)$ $P_d(\beta) = P(X > \beta | H_1)$ $P_{md}(\beta) = 1 - P_d(\beta)$

Where:

 H_0 is the hypothesis of signal absence H_1 is the hypothesis of signal presence is a determined acquisition threshold X is the generic random variable related to the search space

SPACE SEGMENT Link Budget

- Classical link budget cannot be used: no data rate, because no data are transmitted
- Radar approach, based on false alarm and detection probabilities

✓ Given a target false alarm probability, b/σ is derived:

$$P_{fa} = 10^{-5}$$
 $\frac{b}{\sigma} = 4.8$
 ✓ Given a target detection probability, η is derived:
 $P_d = 0.9$ $\eta = 12.5$ dB

✓ The minimum transmit power is computed:

$$P_T > \frac{\eta (4\pi D)^2 K T_{op}}{G_{TX} G_{RX} \lambda^2 T}$$

- ✓ D: distance
- ✓ K: Boltzmann constant
- ✓ G_T : TX antenna gain
- ✓ G_R : RX antenna gain
- ✓ λ : wavelength
- ✓ T: pulse width

Orbits

Orbits

- Extensive flight time over south pole
 - Eccentric
 - Longitude of ascending node = 0°
 - Argument of perilune = 90°
- Stability
 - Frozen orbits $e = \left(1 \frac{5}{3}\cos^2 i\right)^{1/2}$
 - Null variations of eccentricity and argument of perilune due to compensation of $\rm J_{2,}\,J_{3},\,J_{5}$
 - Librating orbits
 - Quasi-periodic variations of eccentricity and argument of perilune
- Coverage and precision
 - 6 satellites for first constellation (100 m positioning error)
 - 12 satellites for final constellation (50 m positioning error)

SPACE SEGMENT Frozen Orbits

Eccentricity:

$$\frac{\partial e}{\partial t} = \frac{15}{8} \frac{n_3^2}{n} e \left(1 - e^2\right)^{\frac{1}{2}} \sin^2 i \sin 2\omega$$
Arg. of Periapsis:

$$\frac{\partial \omega}{\partial t} = \frac{3}{16} \frac{n_3^2}{n} \frac{1}{\left(1 - e^2\right)^{\frac{1}{2}}} \left[\left(3 + 2e^2 + 5\cos 2i\right) + 5\left(1 - 2e^2 - \cos 2i\right)\cos 2\omega \right]$$

$$\frac{d\omega}{dt} = 0 \qquad \frac{de}{dt} = 0$$

Excluding trivial cases, i.e. equatorial (i=0°,180°), circular (e=0), escape (e=1), we can find solutions for the eccentricity rate when $\omega = 90^{\circ}, 270^{\circ}$. Now, the perilune rate is null for

$$\omega = 90^{\circ}, 270^{\circ} \Rightarrow e = \left(1 - \frac{5}{3}\cos^2 i\right)^{1/2}$$

SPACE SEGMENT Orbits

Ground Tests

Ground Tests

Test	Q/A	Description
Static load tests	Q	The flight structure is held in a rigid test stand representing the launch vehicle adapter and subjected to limit, yield and ultimate loads through hydraulic jacks.
Spin test	Q	Required to simulate the spinning motion after launcher separation.
Sinusoidal vibration test	Q, A	A shaker subjects the spacecraft to a "sweep" of sinusoidal frequencies according to the values prescribed in the launch vehicle manual.
Shock test	Q	Shocks like shroud jettison and spacecraft separation are simulated.
Physical properties test	Q, A	Mass, center of gravity and moments of inertia are determined, needed for attitude control design and for the setup of other mechanical tests.
Thermal vacuum tests	Q, A	Verification of the electrical functionality in the vacuum of space under the extreme temperatures to which the spacecraft will be subjected.
Thermal balance test	Q	Simulation of the mission thermal environment (solar radiation, albedo, internal dissipation), performed in a vacuum solar simulation chamber.
Electromagnetic compatibility test	Q, A	The possibility of electromagnetic interference from external sources is analyzed. This test is run in an anechoic room.

